中文字幕亚洲综合小综合一|偷自拍亚洲视频在线观看99|台湾AV国片精品福利|亚洲熟女乱综合一区二区

    易教網(wǎng)-北京家教
    當(dāng)前城市:北京 [切換其它城市] 
    www.eduease.com 請(qǐng)家教熱線:400-6789-353 010-64450797 010-64436939

    易教網(wǎng)微信版微信版 APP下載
    易教播報(bào)

    歡迎您光臨易教網(wǎng),感謝大家一直以來(lái)對(duì)易教網(wǎng)北京家教的大力支持和關(guān)注!我們將竭誠(chéng)為您提供更優(yōu)質(zhì)便捷的服務(wù),打造北京地區(qū)請(qǐng)家教,做家教,找家教的專業(yè)平臺(tái),敬請(qǐng)致電:010-64436939

    當(dāng)前位置:家教網(wǎng)首頁(yè) > 家庭教育 > 高考數(shù)學(xué)復(fù)習(xí)攻略與重點(diǎn)解析

    高考數(shù)學(xué)復(fù)習(xí)攻略與重點(diǎn)解析

    【來(lái)源:易教網(wǎng) 更新時(shí)間:2024-11-28
    高考數(shù)學(xué)復(fù)習(xí)攻略與重點(diǎn)解析

    篇1:高考數(shù)學(xué)復(fù)習(xí)攻略與重點(diǎn)解析

      七大專題

      專題一  函數(shù)與不等式

      以函數(shù)為主線,不等式和函數(shù)綜合題型是考點(diǎn)。

      函數(shù)的性質(zhì):著重掌握函數(shù)的單調(diào)性、奇偶性、周期性、對(duì)稱性。這些性質(zhì)通常會(huì)綜合起來(lái)一起考查,并且有時(shí)會(huì)考查具體函數(shù)的這些性質(zhì),有時(shí)會(huì)考查抽象函數(shù)的這些性質(zhì)。

      一元二次函數(shù):一元二次函數(shù)是貫穿中學(xué)階段的一大函數(shù),初中階段主要對(duì)它的一些基礎(chǔ)性質(zhì)進(jìn)行了了解,高中階段更多的是將它與導(dǎo)數(shù)進(jìn)行銜接,根據(jù)拋物線的開(kāi)口方向、與x軸的交點(diǎn)位置,進(jìn)而討論與定義域在x軸上的擺放順序,這樣可以判斷導(dǎo)數(shù)的正負(fù),最終達(dá)到求出單調(diào)區(qū)間、極值及最值的目的。

      不等式:這一類問(wèn)題常常出現(xiàn)在恒成立,或存在性問(wèn)題中,其實(shí)質(zhì)是求函數(shù)的最值。當(dāng)然關(guān)于不等式的解法、均值不等式,這些不等式的基礎(chǔ)知識(shí)點(diǎn)需掌握,還有一類較難的綜合性問(wèn)題為不等式與數(shù)列的結(jié)合問(wèn)題,掌握幾種不等式的放縮技巧是非常必要的。

      專題二:數(shù)列

      以等差、等比數(shù)列為載體,考查等差、等比數(shù)列的通項(xiàng)公式、求和公式、通項(xiàng)公式和求和公式的關(guān)系,求通項(xiàng)公式的幾種常用方法,求前n項(xiàng)和的幾種常用方法。這些知識(shí)點(diǎn)需要掌握。

      專題三:三角函數(shù),平面向量,解三角形

      三角函數(shù)是每年必考的知識(shí)點(diǎn),難度較小。選擇、填空、解答題中都有涉及。有時(shí)候考查三角函數(shù)的公式之間的互相轉(zhuǎn)化,進(jìn)而求單調(diào)區(qū)間或值域;有時(shí)候考查三角函數(shù)與解三角形,向量的綜合性問(wèn)題,當(dāng)然正弦、余弦定理是很好的工具。向量可以很好得實(shí)現(xiàn)數(shù)與形的轉(zhuǎn)化,是一個(gè)很重要的知識(shí)銜接點(diǎn),它還可以和數(shù)學(xué)的一大難點(diǎn)解析幾何整合。

      專題四:立體幾何

      立體幾何中,三視圖是每年必考點(diǎn),主要出現(xiàn)在選擇,填空題中。大題中的立體幾何主要考查建立空間直角坐標(biāo)系,通過(guò)向量這一手段求空間距離、線面角、二面角等。

      另外,需要掌握棱錐、棱柱的性質(zhì)。在棱錐中,著重掌握三棱錐、四棱錐;棱柱中,應(yīng)該掌握三棱柱、長(zhǎng)方體?臻g直線與平面的位置關(guān)系應(yīng)以證明垂直為重點(diǎn),當(dāng)然?疾榈姆椒殚g接證明。

      專題五:解析幾何

      直線與圓錐曲線的位置關(guān)系,動(dòng)點(diǎn)軌跡的探討,求定值、定點(diǎn)、最值這些為近年來(lái)考的熱點(diǎn)問(wèn)題。解析幾何是公認(rèn)的難點(diǎn),它的難點(diǎn)不是對(duì)題目無(wú)思路,不是不知道如何化解所給已知條件,難點(diǎn)在于如何巧妙地破解已知條件,如何巧妙地將復(fù)雜的運(yùn)算量進(jìn)行化簡(jiǎn)。當(dāng)然這里邊包含了一些常用方法、常用技巧,需要去記憶體會(huì)。

      專題六:概率統(tǒng)計(jì),算法,復(fù)數(shù)

      算法與復(fù)數(shù)一般會(huì)出現(xiàn)在選擇題中,難度較小,概率與統(tǒng)計(jì)問(wèn)題著重考查閱讀能力和獲取信息的能力,與實(shí)際生活關(guān)系密切,需學(xué)會(huì)能有效得提取信息,翻譯信息。做到這一點(diǎn)時(shí),題目也就不攻自破了。

      專題七:極坐標(biāo)與參數(shù)方程、不等式選講

      這部分所考查的題目比較簡(jiǎn)單,主要出現(xiàn)在選做題中,需要熟記公式。

    篇2:高考數(shù)學(xué)復(fù)習(xí)攻略與重點(diǎn)解析

      定義:

      形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量?jī)鐬橐蜃兞,指?shù)為常量的函數(shù)稱為冪函數(shù)。

      定義域和值域:

      當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域

      性質(zhì):

      對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性:

      首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

      排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

      排除了為0這種可能,即對(duì)于x<0和x>0的所有實(shí)數(shù),q不能是偶數(shù);

      排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

      總結(jié)起來(lái),就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:

      如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

      如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。

      在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。

      在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。

      而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

      由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

      可以看到:

      (1)所有的圖形都通過(guò)(1,1)這點(diǎn)。

      (2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。

      (3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。

      (4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。

      (5)a大于0,函數(shù)過(guò)(0,0);a小于0,函數(shù)不過(guò)(0,0)點(diǎn)。

      (6)顯然冪函數(shù)無(wú)界。

      1.冪函數(shù)解析式的右端是個(gè)冪的形式。冪的底數(shù)是自變量,指數(shù)是常數(shù),可以為任何實(shí)數(shù);與指數(shù)函數(shù)的形式正好相反。

      2冪函數(shù)的圖像和性質(zhì)比較復(fù)雜,高考只要求掌握指數(shù)為1、2、3、-1、?時(shí)冪函數(shù)的圖像和性質(zhì)。

      3了解其它冪函數(shù)的圖像和性質(zhì),主要有:

     、佼(dāng)自變量為正數(shù)時(shí),冪函數(shù)的圖像都在第一象限。指數(shù)為負(fù)數(shù)的冪函數(shù)都是過(guò)點(diǎn)(1,1)的減函數(shù),以坐標(biāo)軸為漸近線,指數(shù)越小越靠近

      x軸。指數(shù)為正數(shù)的冪函數(shù)都是過(guò)原點(diǎn)和(1,1)的增函數(shù);在x=1的右側(cè)指數(shù)越大越遠(yuǎn)離x軸。

     、趦绾瘮(shù)的定義域可以根據(jù)冪的意義去求出:要么是x≥0,要么是關(guān)于原點(diǎn)對(duì)稱。前者只在第一象限有圖像;后者一定具有奇偶性,利用對(duì)稱性可以畫出二或三象限的圖像。注意第四象限絕對(duì)不會(huì)有圖像。

     、鄱x域關(guān)于原點(diǎn)對(duì)稱的冪函數(shù)一定具有奇偶性。當(dāng)指數(shù)是偶數(shù)或分子是偶數(shù)的分?jǐn)?shù)時(shí)是偶函數(shù);否則是奇函數(shù)。

      4冪函數(shù)奇偶性的一般規(guī)律:

     、胖笖(shù)是偶數(shù)的冪函數(shù)是偶函數(shù)。

     、浦笖(shù)是奇數(shù)的冪函數(shù)是奇函數(shù)。

     、侵笖(shù)是分母為偶數(shù)的分?jǐn)?shù)時(shí),定義域x>0或x≥0,沒(méi)有奇偶性。

     、戎笖(shù)是分子為偶數(shù)的分?jǐn)?shù)時(shí),冪函數(shù)是偶函數(shù)。

      ⑸指數(shù)是分子分母為奇數(shù)的分?jǐn)?shù)時(shí),冪函數(shù)是奇數(shù)函數(shù)。

    篇3:高考數(shù)學(xué)復(fù)習(xí)攻略與重點(diǎn)解析

     1、集合的含義:

     

      “集合”這個(gè)詞首先讓我們想到的是上體育課或者開(kāi)會(huì)時(shí)老師經(jīng)常喊的“全體集合”。數(shù)學(xué)上的“集合”和這個(gè)意思是一樣的,只不過(guò)一個(gè)是動(dòng)詞一個(gè)是名詞而已。

     

      所以集合的含義是:某些指定的對(duì)象集在一起就成為一個(gè)集合,簡(jiǎn)稱集,其中每一個(gè)對(duì)象叫元素。比如高一二班集合,那么所有高一二班的同學(xué)就構(gòu)成了一個(gè)集合,每一個(gè)同學(xué)就稱為這個(gè)集合的元素。

     

      2、集合的表示

     

      通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作dA。

     

      有一些特殊的集合需要記憶:

     

      非負(fù)整數(shù)集(即自然數(shù)集)N正整數(shù)集N*或N+

     

      整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

     

      集合的表示方法:列舉法與描述法。

     

      ①列舉法:{a,b,c……}

     

     、诿枋龇ǎ簩⒓现械脑氐墓矊傩悦枋龀鰜(lái)。如{xR|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

     

     、壅Z(yǔ)言描述法:例:{不是直角三角形的三角形}

     

      例:不等式x-3>2的解集是{xR|x-3>2}或{x|x-3>2}

     

      強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素

     

      A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。

     

      3、集合的三個(gè)特性

     

      (1)無(wú)序性

     

      指集合中的元素排列沒(méi)有順序,如集合A={1,2},集合B={2,1},則集合A=B。

     

      例題:集合A={1,2},B={a,b},若A=B,求a、b的值。

     

      解:,A=B

     

      注意:該題有兩組解。

     

      (2)互異性

     

      指集合中的元素不能重復(fù),A={2,2}只能表示為{2}

     

      (3)確定性

     

      集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。

     

      1.子集,A包含于B,有兩種可能

     

      (1)A是B的一部分,

     

      (2)A與B是同一集合,A=B,A、B兩集合中元素都相同。

     

      反之:集合A不包含于集合B。

     

      2.不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。

     

      4、有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-2個(gè)非空真子集。如A={1,2,3,4,5},則集合A有25=32個(gè)子集,25-1=31個(gè)真子集,25-2=30個(gè)非空真子集。

    篇4:高考數(shù)學(xué)復(fù)習(xí)攻略與重點(diǎn)解析

      一、定義與定義式:

      自變量x和因變量y有如下關(guān)系:y=kx+b,則此時(shí)稱y是x的一次函數(shù)。

      特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。

      即:y=kx(k為常數(shù),k≠0)

      二、一次函數(shù)的性質(zhì):

      1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k

      即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))

      2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。

      三、一次函數(shù)的圖像及性質(zhì):

      1.作法與圖形:通過(guò)如下3個(gè)步驟

     。1)列表;

     。2)描點(diǎn);

     。3)連線,可以作出一次函數(shù)的圖像—一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))

      2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。

      3.k,b與函數(shù)圖像所在象限:

      當(dāng)k>0時(shí),直線必通過(guò)一、三象限,y隨x的增大而增大;

      當(dāng)k<0時(shí),直線必通過(guò)二、四象限,y隨x的增大而減小。

      當(dāng)b>0時(shí),直線必通過(guò)一、二象限;

      當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)

      當(dāng)b<0時(shí),直線必通過(guò)三、四象限。

      特別地,當(dāng)b=O時(shí),直線通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

      這時(shí),當(dāng)k>0時(shí),直線只通過(guò)一、三象限;當(dāng)k<0時(shí),直線只通過(guò)二、四象限。

      四、確定一次函數(shù)的表達(dá)式:

      已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過(guò)點(diǎn)A、B的一次函數(shù)的表達(dá)式。

     。1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。

     。2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②

     。3)解這個(gè)二元一次方程,得到k,b的值。

     。4)最后得到一次函數(shù)的表達(dá)式。

      五、一次函數(shù)在生活中的應(yīng)用:

      1.當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù):s=vt。

      2.當(dāng)水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。

      六、常用公式:(不全,希望有人補(bǔ)充)

      1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

      2.求與x軸平行線段的中點(diǎn):|x1-x2|/2

      3.求與y軸平行線段的中點(diǎn):|y1-y2|/2

      4.求任意線段的長(zhǎng):√(x1-x2)^2+(y1-y2)^2(注:根號(hào)下(x1-x2)與(y1-y2)的平方和)

    篇5:高考數(shù)學(xué)復(fù)習(xí)攻略與重點(diǎn)解析

    篇5:高考數(shù)學(xué)復(fù)習(xí)攻略與重點(diǎn)解析

      天津市第四十二中學(xué) 張鼎言

      5.已知拋物線y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)P1(x1,y1),P2(x2,y2),P3(x3,y3)在拋物線上,且2x2=x1+x3,則有()

      A.|FP1|+|FP2|=|FP3|

      B.|FP1|2+|FP2|2=|FP3|2

      C.2|FP2|=|FP1|+|FP3|

      D.|FP2|2=|FP1|·|FP3|

      分析∵P1、P2、P3在拋物線上,

      ∴由拋物線定義

      |PF1|=x1-(--)

      =x1+-

      |PF2|=x2+-

      |PF3|=x3+-

      又2x2=x1+x3

      2(x2+-)=(x1+-)+(x3+-)

      ∴2|FP2|=|FP1|+|FP3|

      選C

      6.已知拋物線y=-x2+3上存在關(guān)于直線x+y=0對(duì)稱的相異兩點(diǎn)A、B,則|AB|等于()

      (A)3(B)4

      (C)3-(D)4-

      解:A(x1,y1),與B(x2,y2)關(guān)于直線x+y=0對(duì)稱,又A、B在拋物線上,

      -

      (2)-(1):y1+x1=-x12+y12=(y1+x1)(y1-x1)

      ∵點(diǎn)A不在直線x+y=0上

      ∴x1+y1≠0,y1-x1=1,y1=x1+1代入(1)

      -

      A(-2,-1),B(1,2)反之亦然

      ∴|AB|=3-,選C

      7.雙曲線C1:---=1(a>0,b>0)的左準(zhǔn)線為l,左焦點(diǎn)和右焦點(diǎn)分別為F1和F2;拋物線C2的準(zhǔn)線為l,焦點(diǎn)為F2;C1與C2的一個(gè)交點(diǎn)為M,則---等于()

      A.-1B.1

      C.--D.-

      解:|F1F2|=2c,設(shè)|MF1|=x,|MF2|=y

      由M在雙曲線C1上,x-y=2a

      M在拋物線C2上,|MN|=|MF2|=y

      又M在C1上,由雙曲線第二定義-=-=-

      -

      ---

      =---=-1選A

      注:本題把雙曲線定義、第二定義與拋物線定義連結(jié)在一起,這里M在C1、C2上是突破口,所以幾何圖形上的公共點(diǎn)是知識(shí)點(diǎn)的交叉點(diǎn),是設(shè)計(jì)問(wèn)題的重要根源.

      (三)直線與圓錐曲線相切

      復(fù)習(xí)導(dǎo)引:學(xué)習(xí)了導(dǎo)數(shù),求圓錐曲線的切線多了一條重要途徑,歸結(jié)起來(lái)求切線可用判別式△=0或求導(dǎo).

      1.如圖,在平面直角坐標(biāo)系xOy中,過(guò)y軸正方向上一點(diǎn)C(0,c)任作一直線,與拋物線y=x2相交于A、B兩點(diǎn),一條垂直于x軸的直線,分別與線段AB和直線l:y=-c交于P,Q,(1)若-·■=2,求c的值;

      (2)若P為線段AB的中點(diǎn),求證:QA為此拋物線的切線;

      (3)試問(wèn)(2)的逆命題是否成立?說(shuō)明理由。

      解:(1)-

      設(shè)A(x1,y1)、B(x2,y2)即A(x1,x12)、B(x2,x22)

      △=k2+4c>0

      x1+x2=k,x1·x2=-c,y1·y2=(x1·x2)2=c2

      -·■=x1x2+(x1·x2)2=c2-c=2→c=2,c=-1(舍去)

      解(2)線段AB中點(diǎn)P(xp,yp)

      xp=-,yp=-

      ∴xp=-,Q(-,-c)

      kAQ=-

      =-=2x1

      又過(guò)A點(diǎn)的切線斜率

      k=y\'-=2x1

      ∴AQ是此拋物線在A點(diǎn)的切線。

      解(3)過(guò)A點(diǎn)的切線:y-y1=2x1(x-x1)

      y-x12=2x1(x-x1)

      化簡(jiǎn)y=2x1x-x12

      Q(-,-c)是否滿足方程。

      y=2·x1·■-x12=x1·x2=-c

      ∴過(guò)A點(diǎn)的切線過(guò)Q點(diǎn)

      ∴逆命題成立

    篇6:高考數(shù)學(xué)復(fù)習(xí)攻略與重點(diǎn)解析

      函數(shù)三要素知識(shí)點(diǎn):

      相同函數(shù)的判斷方法:①對(duì)應(yīng)法則;②定義域(兩點(diǎn)必須同時(shí)具備)

      (1)函數(shù)解析式的求法:

     、俣x法(拼湊):②換元法:③待定系數(shù)法:④賦值法:

      (2)函數(shù)定義域的求法:

     、俸瑓(wèn)題的定義域要分類討論;

      高二數(shù)學(xué)函數(shù)三要素②對(duì)于實(shí)際問(wèn)題,在求出函數(shù)解析式后;必須求出其定義域,此時(shí)的定義域要根據(jù)實(shí)際意義來(lái)確定。

      (3)函數(shù)值域的求法:

     、倥浞椒ǎ恨D(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來(lái)求值;常轉(zhuǎn)化為型如:的形式;

     、谀媲蠓(反求法):通過(guò)反解,用來(lái)表示,再由的取值范圍,通過(guò)解不等式,得出的取值范圍;常用來(lái)解,型如:;

     、軗Q元法:通過(guò)變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;

     、萑怯薪绶ǎ恨D(zhuǎn)化為只含正弦、余弦的函數(shù),運(yùn)用三角函數(shù)有界性來(lái)求值域;

     、藁静坏仁椒ǎ恨D(zhuǎn)化成型如:,利用平均值不等式公式來(lái)求值域;

     、邌握{(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。

     、鄶(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來(lái)求值域。

    篇7:高考數(shù)學(xué)復(fù)習(xí)攻略與重點(diǎn)解析

      1.函數(shù)的單調(diào)性(局部性質(zhì))

      (1)增函數(shù)

      設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1

      如果對(duì)于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1f(x2),那么就說(shuō)f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.

      注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);

      (2)圖象的特點(diǎn)

      如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說(shuō)函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

      (3)函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

      (A)定義法:

      a.任取x1,x2∈D,且x1

      b.作差f(x1)-f(x2);

      c.變形(通常是因式分解和配方);

      d.定號(hào)(即判斷差f(x1)-f(x2)的正負(fù));

      e.下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).

      (B)圖象法(從圖象上看升降)

      (C)復(fù)合函數(shù)的單調(diào)性

      復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”

      注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

      8.函數(shù)的奇偶性(整體性質(zhì))

      (1)偶函數(shù)

      一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

      (2)奇函數(shù)

      一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

      (3)具有奇偶性的函數(shù)的圖象的特征

      偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

      利用定義判斷函數(shù)奇偶性的步驟:

      a.首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱;

      b.確定f(-x)與f(x)的關(guān)系;

      c.作出相應(yīng)結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).

      注意:函數(shù)定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,若不對(duì)稱則函數(shù)是非奇非偶函數(shù).若對(duì)稱,(1)再根據(jù)定義判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來(lái)判定;(3)利用定理,或借助函數(shù)的圖象判定.

      9、函數(shù)的解析表達(dá)式

      (1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.

      (2)求函數(shù)的解析式的主要方法有:

      1)湊配法

      2)待定系數(shù)法

      3)換元法

      4)消參法

      10.函數(shù)最大(小)值(定義見(jiàn)課本p36頁(yè))

      a.利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值

      b.利用圖象求函數(shù)的最大(小)值

      c.利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:

      如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);

      如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

    篇8:高考數(shù)學(xué)復(fù)習(xí)攻略與重點(diǎn)解析

      反比例函數(shù)

      形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

      自變量x的取值范圍是不等于0的一切實(shí)數(shù)。

      反比例函數(shù)圖像性質(zhì):

      反比例函數(shù)的圖像為雙曲線。

      由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對(duì)稱。

      另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

      如圖,上面給出了k分別為正和負(fù)(2和-2)時(shí)的函數(shù)圖像。

      當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過(guò)一,三象限,是減函數(shù)

      當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過(guò)二,四象限,是增函數(shù)

      反比例函數(shù)圖像只能無(wú)限趨向于坐標(biāo)軸,無(wú)法和坐標(biāo)軸相交。

      知識(shí)點(diǎn):

      1.過(guò)反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。

      2.對(duì)于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(x±m)m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)

    篇9:高考數(shù)學(xué)復(fù)習(xí)攻略與重點(diǎn)解析

    篇9:高考數(shù)學(xué)復(fù)習(xí)攻略與重點(diǎn)解析

      圓心的三個(gè)重要的幾何性質(zhì):

      1.圓心在過(guò)切點(diǎn)且與切線垂直的直線上。

      2.圓心在模一條弦的中垂線上。

      3.兩圓內(nèi)切或外切時(shí),切點(diǎn)與兩圓圓心三點(diǎn)共線。

     

     

      思維升華

      (1)直接法

      根據(jù)圓的幾何性質(zhì),直接求出圓心坐標(biāo)和半徑,進(jìn)而寫出方程。

      (2)待定系數(shù)法

     、偃粢阎獥l件與圓心(a,b)和半徑r有關(guān),則設(shè)圓的標(biāo)準(zhǔn)方程依據(jù)已知條件列出關(guān)于a,b,r的方程組,從而求出a,b,r的值;

     、谌粢阎獥l件沒(méi)有明確給出圓心或半徑,則選擇圓的一般方程,依據(jù)已知條件列出關(guān)于D、E、F的方程組,進(jìn)而求出D、E、F的值。

     

     

      求與圓有關(guān)的軌跡問(wèn)題時(shí),根據(jù)題設(shè)條件的不同常采用以下方法:

     、僦苯臃ǎ褐苯痈鶕(jù)題目提供的條件列出方程。

      ②定義法:根據(jù)圓、直線等定義列方程。

     、蹘缀畏ǎ豪脠A的幾何性質(zhì)列方程。

     、艽敕ǎ赫业揭簏c(diǎn)與已知點(diǎn)的關(guān)系,代入已知點(diǎn)滿足的關(guān)系式等。

      方法:利用幾何性質(zhì)巧設(shè)方程求半徑

      溫馨提醒:

      (1)一般解法(代數(shù)法):可以求出曲線y=x2-6x+1與坐標(biāo)軸的三個(gè)交點(diǎn),設(shè)圓的方程為一般式,代入點(diǎn)的坐標(biāo)求解析式。

      (2)巧妙解法(幾何法):利用圓的性質(zhì),知道圓心一定在圓上兩點(diǎn)連線的垂直平分線上,從而設(shè)圓的方程為標(biāo)準(zhǔn)式,簡(jiǎn)化計(jì)算.顯然幾何法比代數(shù)法的計(jì)算量小,因此平時(shí)訓(xùn)練多采用幾何法解題。

    篇10:高考數(shù)學(xué)復(fù)習(xí)攻略與重點(diǎn)解析

      高中數(shù)學(xué)函數(shù)的有關(guān)概念

      1.高中數(shù)學(xué)函數(shù)函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于函數(shù)A中的任意一個(gè)數(shù)x,在函數(shù)B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從函數(shù)A到函數(shù)B的一個(gè)函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的函數(shù){f(x)|x∈A}叫做函數(shù)的值域.

      注意:

      函數(shù)定義域:能使函數(shù)式有意義的實(shí)數(shù)x的函數(shù)稱為函數(shù)的定義域。

      求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:

      (1)分式的分母不等于零;

      (2)偶次方根的被開(kāi)方數(shù)不小于零;

      (3)對(duì)數(shù)式的真數(shù)必須大于零;

      (4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.

      (5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的函數(shù).

      (6)指數(shù)為零底不可以等于零,

      (7)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義.

      ?相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無(wú)關(guān));②定義域一致(兩點(diǎn)必須同時(shí)具備)

      2.高中數(shù)學(xué)函數(shù)值域:先考慮其定義域

      (1)觀察法

      (2)配方法

      (3)代換法

      3.函數(shù)圖象知識(shí)歸納

      (1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的函數(shù)C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.

      (2)畫法

      A、描點(diǎn)法:

      B、圖象變換法

      常用變換方法有三種

      1)平移變換

      2)伸縮變換

      3)對(duì)稱變換

      4.高中數(shù)學(xué)函數(shù)區(qū)間的概念

      (1)函數(shù)區(qū)間的分類:開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間

      (2)無(wú)窮區(qū)間

      5.映射

      一般地,設(shè)A、B是兩個(gè)非空的函數(shù),如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于函數(shù)A中的任意一個(gè)元素x,在函數(shù)B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:AB為從函數(shù)A到函數(shù)B的一個(gè)映射。記作“f(對(duì)應(yīng)關(guān)系):A(原象)B(象)”

      對(duì)于映射f:A→B來(lái)說(shuō),則應(yīng)滿足:

      (1)函數(shù)A中的每一個(gè)元素,在函數(shù)B中都有象,并且象是唯一的;

      (2)函數(shù)A中不同的元素,在函數(shù)B中對(duì)應(yīng)的象可以是同一個(gè);

      (3)不要求函數(shù)B中的每一個(gè)元素在函數(shù)A中都有原象。

      6.高中數(shù)學(xué)函數(shù)之分段函數(shù)

      (1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

      (2)各部分的自變量的取值情況.

      (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

      補(bǔ)充:復(fù)合函數(shù)

      如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復(fù)合函數(shù)。

    篇11:高考數(shù)學(xué)復(fù)習(xí)攻略與重點(diǎn)解析

     

     

     

      二、雙曲線及其性質(zhì)

      1.雙曲線的定義及理解

      (1)定義:平面上,到兩定點(diǎn)的距離之差的絕對(duì)值為常數(shù)(小于兩定點(diǎn)間的距離)的動(dòng)點(diǎn)的軌跡。兩定點(diǎn)叫作雙曲線的焦點(diǎn),兩焦點(diǎn)間的距離叫作焦距。

      三、拋物線及其性質(zhì)

      1.拋物線的定義

      平面內(nèi)與一定點(diǎn)F和一條定直線l(l不過(guò)F)的距離相等的點(diǎn)的軌跡叫作拋物線。點(diǎn)F叫作拋物線的焦點(diǎn),直線l叫作拋物線的準(zhǔn)線。

      2.拋物線定義的理解

      拋物線的定義是解決拋物線問(wèn)題的基礎(chǔ),它能將兩種距離(拋物線上的點(diǎn)到焦點(diǎn)的距離、拋物線上的點(diǎn)到準(zhǔn)線的距離)進(jìn)行等量轉(zhuǎn)化。如果問(wèn)題中涉及拋物線的焦點(diǎn)和準(zhǔn)線,又能與距離聯(lián)系起來(lái),那么用拋物線定義就能解決問(wèn)題。

      3.拋物線的標(biāo)準(zhǔn)方程和幾何性質(zhì)

     

     

    篇12:高考數(shù)學(xué)復(fù)習(xí)攻略與重點(diǎn)解析

      并集:由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,記作A∪B(或B∪A),讀作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}.差集表示

      交集:由屬于A且屬于B的元素組成的集合,記作A∩B(或B∩A),讀作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}.

      對(duì)稱差集:設(shè)A,B為集合,A與B的對(duì)稱差集A?B定義為:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對(duì)稱差運(yùn)算的另一種定義是:A?B=(A∪B)-(A∩B)

      文章來(lái)源于網(wǎng)絡(luò),由三好網(wǎng)編輯整理,如有侵權(quán)請(qǐng)及時(shí)聯(lián)系刪除。

      2

      高考數(shù)學(xué)二輪復(fù)習(xí)集合性質(zhì)專題總結(jié)

      高考數(shù)學(xué)二輪復(fù)習(xí)是基于一輪復(fù)習(xí)基礎(chǔ)上的能力提升,所以高三生要特別重視,也是漲分的關(guān)鍵時(shí)期。那高考二輪復(fù)習(xí)應(yīng)該怎么做呢,從哪些方面著手呢?三好網(wǎng)小編整理了高考數(shù)學(xué)二輪復(fù)習(xí)知識(shí)點(diǎn)專題總結(jié),希望能幫大家理順復(fù)習(xí)思路。

      1、集合的含義:

      “集合”這個(gè)詞首先讓我們想到的是上體育課或者開(kāi)會(huì)時(shí)老師經(jīng)常喊的“全體集合”。數(shù)學(xué)上的“集合”和這個(gè)意思是一樣的,只不過(guò)一個(gè)是動(dòng)詞一個(gè)是名詞而已。

      所以集合的含義是:某些指定的對(duì)象集在一起就成為一個(gè)集合,簡(jiǎn)稱集,其中每一個(gè)對(duì)象叫元素。比如高一二班集合,那么所有高一二班的同學(xué)就構(gòu)成了一個(gè)集合,每一個(gè)同學(xué)就稱為這個(gè)集合的元素。

      2、集合的表示

      通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。

      有一些特殊的集合需要記憶:

      非負(fù)整數(shù)集(即自然數(shù)集)N正整數(shù)集N*或N+

      整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

      集合的表示方法:列舉法與描述法。

     、倭信e法:{a,b,c……}

     、诿枋龇ǎ簩⒓现械脑氐墓矊傩悦枋龀鰜(lái)。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

     、壅Z(yǔ)言描述法:例:{不是直角三角形的三角形}

      例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

      強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素

      A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。

      3、集合的三個(gè)特性

      (1)無(wú)序性

      指集合中的元素排列沒(méi)有順序,如集合A={1,2},集合B={2,1},則集合A=B。

      例題:集合A={1,2},B={a,b},若A=B,求a、b的值。

      解:,A=B

      注意:該題有兩組解。

      (2)互異性

      指集合中的元素不能重復(fù),A={2,2}只能表示為{2}

      (3)確定性

      集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。

      1.子集,A包含于B,有兩種可能

      (1)A是B的一部分,

      (2)A與B是同一集合,A=B,A、B兩集合中元素都相同。

      反之:集合A不包含于集合B。

      2.不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。

      4、有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-2個(gè)非空真子集。如A={1,2,3,4,5},則集合A有25=32個(gè)子集,25-1=31個(gè)真子集,25-2=30個(gè)非空真子集。

    篇13:高考數(shù)學(xué)復(fù)習(xí)攻略與重點(diǎn)解析

    篇13:高考數(shù)學(xué)復(fù)習(xí)攻略與重點(diǎn)解析

      七大專題

      專題一  函數(shù)與不等式

      以函數(shù)為主線,不等式和函數(shù)綜合題型是考點(diǎn)。

      函數(shù)的性質(zhì):著重掌握函數(shù)的單調(diào)性、奇偶性、周期性、對(duì)稱性。這些性質(zhì)通常會(huì)綜合起來(lái)一起考查,并且有時(shí)會(huì)考查具體函數(shù)的這些性質(zhì),有時(shí)會(huì)考查抽象函數(shù)的這些性質(zhì)。

      一元二次函數(shù):一元二次函數(shù)是貫穿中學(xué)階段的一大函數(shù),初中階段主要對(duì)它的一些基礎(chǔ)性質(zhì)進(jìn)行了了解,高中階段更多的是將它與導(dǎo)數(shù)進(jìn)行銜接,根據(jù)拋物線的開(kāi)口方向、與x軸的交點(diǎn)位置,進(jìn)而討論與定義域在x軸上的擺放順序,這樣可以判斷導(dǎo)數(shù)的正負(fù),最終達(dá)到求出單調(diào)區(qū)間、極值及最值的目的。

      不等式:這一類問(wèn)題常常出現(xiàn)在恒成立,或存在性問(wèn)題中,其實(shí)質(zhì)是求函數(shù)的最值。當(dāng)然關(guān)于不等式的解法、均值不等式,這些不等式的基礎(chǔ)知識(shí)點(diǎn)需掌握,還有一類較難的綜合性問(wèn)題為不等式與數(shù)列的結(jié)合問(wèn)題,掌握幾種不等式的放縮技巧是非常必要的。

      專題二:數(shù)列

      以等差、等比數(shù)列為載體,考查等差、等比數(shù)列的通項(xiàng)公式、求和公式、通項(xiàng)公式和求和公式的關(guān)系,求通項(xiàng)公式的幾種常用方法,求前n項(xiàng)和的幾種常用方法。這些知識(shí)點(diǎn)需要掌握。

      專題三:三角函數(shù),平面向量,解三角形

      三角函數(shù)是每年必考的知識(shí)點(diǎn),難度較小。選擇、填空、解答題中都有涉及。有時(shí)候考查三角函數(shù)的公式之間的互相轉(zhuǎn)化,進(jìn)而求單調(diào)區(qū)間或值域;有時(shí)候考查三角函數(shù)與解三角形,向量的綜合性問(wèn)題,當(dāng)然正弦、余弦定理是很好的工具。向量可以很好得實(shí)現(xiàn)數(shù)與形的轉(zhuǎn)化,是一個(gè)很重要的知識(shí)銜接點(diǎn),它還可以和數(shù)學(xué)的一大難點(diǎn)解析幾何整合。

      專題四:立體幾何

      立體幾何中,三視圖是每年必考點(diǎn),主要出現(xiàn)在選擇,填空題中。大題中的立體幾何主要考查建立空間直角坐標(biāo)系,通過(guò)向量這一手段求空間距離、線面角、二面角等。

      另外,需要掌握棱錐、棱柱的性質(zhì)。在棱錐中,著重掌握三棱錐、四棱錐;棱柱中,應(yīng)該掌握三棱柱、長(zhǎng)方體?臻g直線與平面的位置關(guān)系應(yīng)以證明垂直為重點(diǎn),當(dāng)然?疾榈姆椒殚g接證明。

      專題五:解析幾何

      直線與圓錐曲線的位置關(guān)系,動(dòng)點(diǎn)軌跡的探討,求定值、定點(diǎn)、最值這些為近年來(lái)考的熱點(diǎn)問(wèn)題。解析幾何是公認(rèn)的難點(diǎn),它的難點(diǎn)不是對(duì)題目無(wú)思路,不是不知道如何化解所給已知條件,難點(diǎn)在于如何巧妙地破解已知條件,如何巧妙地將復(fù)雜的運(yùn)算量進(jìn)行化簡(jiǎn)。當(dāng)然這里邊包含了一些常用方法、常用技巧,需要去記憶體會(huì)。

      專題六:概率統(tǒng)計(jì),算法,復(fù)數(shù)

      算法與復(fù)數(shù)一般會(huì)出現(xiàn)在選擇題中,難度較小,概率與統(tǒng)計(jì)問(wèn)題著重考查閱讀能力和獲取信息的能力,與實(shí)際生活關(guān)系密切,需學(xué)會(huì)能有效得提取信息,翻譯信息。做到這一點(diǎn)時(shí),題目也就不攻自破了。

      專題七:極坐標(biāo)與參數(shù)方程、不等式選講

      這部分所考查的題目比較簡(jiǎn)單,主要出現(xiàn)在選做題中,需要熟記公式。

      62個(gè)高頻考點(diǎn)

      集合、簡(jiǎn)易邏輯(4個(gè))

      1.元素與集合間的運(yùn)算

      2.四種命題之間的關(guān)系

      3.全稱、特稱命題

      4.充要條件

      函數(shù)與導(dǎo)數(shù)(13個(gè))

      1.比較大小

      2.分段函數(shù)

      3.函數(shù)周期性

      4.函數(shù)奇偶性

      5.函數(shù)的單調(diào)性

      6.函數(shù)的零點(diǎn)

      7.利用導(dǎo)數(shù)求值

      8.定積分的計(jì)算

      9.導(dǎo)數(shù)與曲線的切線方程

      10.最值與極值

      11.求參數(shù)的取值范圍

      12.證明不等式

      13.數(shù)學(xué)歸納法

      數(shù)列(4個(gè))

      1.數(shù)列求值

      2.證明等差、等比數(shù)列

      3.遞推數(shù)列求通頂公式

      4.數(shù)列前n項(xiàng)和

      三角函數(shù)(4個(gè))

      1.求值化簡(jiǎn)(同角三角函數(shù)的基本關(guān)系式)

      2.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì)(函數(shù)圖象變換、函數(shù)的周期性、函數(shù)的奇偶性、函數(shù)的單調(diào)性)

      3.二倍角的正、余弦、輔助角公式的化簡(jiǎn)

      4.解三角形(正、余弦定理,面積公式)

      平面向量(3個(gè))

      1.模長(zhǎng)與向量的數(shù)量積

      2.夾角的計(jì)算

      3.向量垂直、平行的判定

      不等式(3個(gè))

      1.不等式的解法

      2. 基本不等式的應(yīng)用(化簡(jiǎn)、證明、求最值)

      3.簡(jiǎn)單線性規(guī)劃問(wèn)題

      直線和圓的方程(3個(gè))

      1.直線的傾斜角和斜率

      2.兩條直線平行與垂直的條件

      3.點(diǎn)到直線的距離

      圓錐曲線(4個(gè))

      1.求標(biāo)準(zhǔn)方程

      2.求離心率

      3.弦長(zhǎng)

      4.直線與圓錐曲線的位置關(guān)系

      空間簡(jiǎn)單幾何體(3個(gè))

      1.線、面垂直與平行的判定

      2.夾角與距離的計(jì)算

      3.三視圖(體積、表面積、視圖判斷)

      排列、組合、二項(xiàng)式定理 (3個(gè))

      1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理

      2.排列、組合的常用方法

      3.二項(xiàng)式定理的展開(kāi)式 (系數(shù)與二項(xiàng)式系數(shù)、求常數(shù)、求參數(shù)a的值)

      概率與統(tǒng)計(jì)(6個(gè))

      1.抽樣方法

      2.頻率分布直方圖

      3.古典概型與幾何概型

      4.條件概率

      5. 離散型隨機(jī)變量的分布列、期望和方差

      6.線性回歸方程與獨(dú)立性檢驗(yàn)

      復(fù)數(shù)(3個(gè))

      1.復(fù)數(shù)的四則運(yùn)算

      2.復(fù)數(shù)的模長(zhǎng)與共軛復(fù)數(shù)

      3.復(fù)數(shù)與復(fù)平面的點(diǎn)的位置

      框圖(3個(gè))

      1.按流程計(jì)算結(jié)果

      2.循環(huán)結(jié)構(gòu)條件的判斷

      3.程序語(yǔ)言的讀取

      極坐標(biāo)與參數(shù)方程(2個(gè))

      1.極坐標(biāo)與直角坐標(biāo)之間的互化

      2.參數(shù)方程的化簡(jiǎn)

      不等式選講(2個(gè))

      1.含絕對(duì)值不等式的解法(零點(diǎn)分段法)

      2. 利用不等式求參數(shù)的取值范圍

    篇14:高考數(shù)學(xué)復(fù)習(xí)攻略與重點(diǎn)解析

      一、直線與方程

      (1)直線的傾斜角

      定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0180

      (2)直線的斜率

     、俣x:傾斜角不是90的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時(shí),。當(dāng)時(shí),;當(dāng)時(shí),不存在。

     、谶^(guò)兩點(diǎn)的直線的斜率公式:

      注意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90

      (2)k與P1、P2的順序無(wú)關(guān);

      (3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

      (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

      (3)直線方程

     、冱c(diǎn)斜式:直線斜率k,且過(guò)點(diǎn)

      注意:當(dāng)直線的斜率為0時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

     、谛苯厥剑,直線斜率為k,直線在y軸上的截距為b

     、蹆牲c(diǎn)式:()直線兩點(diǎn),

     、芙鼐厥剑浩渲兄本與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。

     、菀话闶剑(A,B不全為0)

     、菀话闶剑(A,B不全為0)

      注意:

      1.各式的適用范圍

      2.特殊的方程如:平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

      (4)直線系方程:即具有某一共同性質(zhì)的直線

      (一)平行直線系

      平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

      (二)過(guò)定點(diǎn)的直線系

      (ⅰ)斜率為k的直線系:,直線過(guò)定點(diǎn);

      (ⅱ)過(guò)兩條直線,的交點(diǎn)的直線系方程為(為參數(shù)),其中直線不在直線系中。

      (5)兩直線平行與垂直

      當(dāng),時(shí),;注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。

      (6)兩條直線的交點(diǎn)

      相交:交點(diǎn)坐標(biāo)即方程組的一組解。方程組無(wú)解;方程組有無(wú)數(shù)解與重合

      (7)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),則

      (8)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離

      (9)兩平行直線距離公式:在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。

      高中數(shù)學(xué)知識(shí)點(diǎn)一:直線方程的一般式關(guān)于x和y的一次方程都表示一條直線.我們把方程寫為Ax+By+C=0,這個(gè)方程(其中A、B不全為零)叫做直線方程的一般式.

      高中數(shù)學(xué)知識(shí)點(diǎn)二:直線方程的不同形式間的關(guān)系直線方程的五種形式的比較如下表:

      高中數(shù)學(xué)知識(shí)點(diǎn)三:直線方程的綜合應(yīng)用

      1.已知所求曲線是直線時(shí),用待定系數(shù)法求.

      2.根據(jù)題目所給條件,選擇適當(dāng)?shù)闹本方程的形式,求出直線方程.對(duì)于兩直線的平行與垂直,直線方程的形式不同,考慮的方向也不同.

      高中數(shù)學(xué)直線方程知識(shí)點(diǎn):表達(dá)方式

      高中數(shù)學(xué)知識(shí)點(diǎn)1:一般式:Ax+By+C=0(A、B不同時(shí)為0)【適用于所有直線】

      高中數(shù)學(xué)知識(shí)點(diǎn)2:點(diǎn)斜式:y-y0=k(x-x0) 【適用于不垂直于x軸的直線】

      表示斜率為k,且過(guò)(x0,y0)的直線

      高中數(shù)學(xué)知識(shí)點(diǎn)3:截距式:x/a+y/b=1【適用于不過(guò)原點(diǎn)或不垂直于x軸、y軸的直線】

      表示與x軸、y軸相交,且x軸截距為a,y軸截距為b的直線

      高中數(shù)學(xué)知識(shí)點(diǎn)4:斜截式:y=kx+b【適用于不垂直于x軸的直線】

      表示斜率為k且y軸截距為b的直線

      高中數(shù)學(xué)知識(shí)點(diǎn)5:兩點(diǎn)式:【適用于不垂直于x軸、y軸的直線】

      表示過(guò)(x1,y1)和(x2,y2)的直線

      (y-y1)/(y2-y1)=(x-x1)/(x2-x1) (x1≠x2,y1≠y2)

      高中數(shù)學(xué)知識(shí)點(diǎn)6:交點(diǎn)式:f1(x,y) *m+f2(x,y)=0 【適用于任何直線】

      表示過(guò)直線f1(x,y)=0與直線f2(x,y)=0的交點(diǎn)的直線

      高中數(shù)學(xué)知識(shí)點(diǎn)7:點(diǎn)平式:f(x,y) -f(x0,y0)=0【適用于任何直線】

      表示過(guò)點(diǎn)(x0,y0)且與直線f(x,y)=0平行的直線

      高中數(shù)學(xué)知識(shí)點(diǎn)8:法線式:x·cosα+ysinα-p=0【適用于不平行于坐標(biāo)軸的直線】

      過(guò)原點(diǎn)向直線做一條的垂線段,該垂線段所在直線的傾斜角為α,p是該線段的長(zhǎng)度

      高中數(shù)學(xué)知識(shí)點(diǎn)9:點(diǎn)向式:(x-x0)/u=(y-y0)/v (u≠0,v≠0)【適用于任何直線】

      表示過(guò)點(diǎn)(x0,y0)且方向向量為(u,v )的直線

      高中數(shù)學(xué)知識(shí)點(diǎn)10:法向式:a(x-x0)+b(y-y0)=0【適用于任何直線】

      表示過(guò)點(diǎn)(x0,y0)且與向量(a,b)垂直的直線

    篇15:高考數(shù)學(xué)復(fù)習(xí)攻略與重點(diǎn)解析

      針對(duì)審題、解題思路不嚴(yán)謹(jǐn),如集合題型未考慮空集情況、函數(shù)問(wèn)題未考慮定義域等主觀性因素造成的失誤進(jìn)行專項(xiàng)訓(xùn)練。

      答題方法:

      選擇題十大速解方法:排除法、增加條件法、以小見(jiàn)大法、極限法、關(guān)鍵點(diǎn)法、對(duì)稱法、小結(jié)論法、歸納法、感覺(jué)法、分析選項(xiàng)法;

      填空題四大速解方法:直接法、特殊化法、數(shù)形結(jié)合法、等價(jià)轉(zhuǎn)化法。

      三角變換與三角函數(shù)的性質(zhì)問(wèn)題

      解題路線圖

     、俨煌腔

     、诮祪鐢U(kuò)角

     、刍痜(x)=Asin(ωx+φ)+h

     、芙Y(jié)合性質(zhì)求解。

      構(gòu)建答題模板

     、倩(jiǎn):三角函數(shù)式的化簡(jiǎn),一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數(shù)”的形式。

     、谡w代換:將ωx+φ看作一個(gè)整體,利用y=sin x,y=cos x的性質(zhì)確定條件。

     、矍蠼猓豪ωx+φ的范圍求條件解得函數(shù)y=Asin(ωx+φ)+h的性質(zhì),寫出結(jié)果。

     、芊此迹悍此蓟仡,查看關(guān)鍵點(diǎn),易錯(cuò)點(diǎn),對(duì)結(jié)果進(jìn)行估算,檢查規(guī)范性。

      解三角形問(wèn)題

      解題路線圖

      (1) ①化簡(jiǎn)變形;②用余弦定理轉(zhuǎn)化為邊的關(guān)系;③變形證明。

      (2) ①用余弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。

      構(gòu)建答題模板

     、俣l件:即確定三角形中的已知和所求,在圖形中標(biāo)注出來(lái),然后確定轉(zhuǎn)化的方向。

     、诙üぞ撸杭锤鶕(jù)條件和所求,合理選擇轉(zhuǎn)化的工具,實(shí)施邊角之間的互化。

     、矍蠼Y(jié)果。

     、茉俜此迹涸趯(shí)施邊角互化的時(shí)候應(yīng)注意轉(zhuǎn)化的方向,一般有兩種思路:一是全部轉(zhuǎn)化為邊之間的關(guān)系;二是全部轉(zhuǎn)化為角之間的關(guān)系,然后進(jìn)行恒等變形。

      數(shù)列的通項(xiàng)、求和問(wèn)題

      解題路線圖

     、傧惹竽骋豁(xiàng),或者找到數(shù)列的關(guān)系式。

     、谇笸(xiàng)公式。

     、矍髷(shù)列和通式。

      構(gòu)建答題模板

     、僬疫f推:根據(jù)已知條件確定數(shù)列相鄰兩項(xiàng)之間的關(guān)系,即找數(shù)列的遞推公式。

     、谇笸(xiàng):根據(jù)數(shù)列遞推公式轉(zhuǎn)化為等差或等比數(shù)列求通項(xiàng)公式,或利用累加法或累乘法求通項(xiàng)公式。

     、鄱ǚ椒ǎ焊鶕(jù)數(shù)列表達(dá)式的結(jié)構(gòu)特征確定求和方法(如公式法、裂項(xiàng)相消法、錯(cuò)位相減法、分組法等)。

     、軐懖襟E:規(guī)范寫出求和步驟。

     、菰俜此迹悍此蓟仡,查看關(guān)鍵點(diǎn)、易錯(cuò)點(diǎn)及解題規(guī)范。

      利用空間向量求角問(wèn)題

      解題路線圖

     、俳⒆鴺(biāo)系,并用坐標(biāo)來(lái)表示向量。

     、诳臻g向量的坐標(biāo)運(yùn)算。

     、塾孟蛄抗ぞ咔罂臻g的角和距離。

      構(gòu)建答題模板

     、僬掖怪保赫页(或作出)具有公共交點(diǎn)的三條兩兩垂直的直線。

      ②寫坐標(biāo):建立空間直角坐標(biāo)系,寫出特征點(diǎn)坐標(biāo)。

     、矍笙蛄浚呵笾本的方向向量或平面的法向量。

     、芮髪A角:計(jì)算向量的夾角。

     、莸媒Y(jié)論:得到所求兩個(gè)平面所成的角或直線和平面所成的角。

      圓錐曲線中的范圍問(wèn)題

      解題路線圖

     、僭O(shè)方程。

     、诮庀禂(shù)。

     、鄣媒Y(jié)論。

      構(gòu)建答題模板

     、偬彡P(guān)系:從題設(shè)條件中提取不等關(guān)系式。

     、谡液瘮(shù):用一個(gè)變量表示目標(biāo)變量,代入不等關(guān)系式。

     、鄣梅秶和ㄟ^(guò)求解含目標(biāo)變量的不等式,得所求參數(shù)的范圍。

     、茉倩仡櫍鹤⒁饽繕(biāo)變量的范圍所受題中其他因素的制約

      解析幾何中的探索性問(wèn)題

      解題路線圖

     、僖话阆燃僭O(shè)這種情況成立(點(diǎn)存在、直線存在、位置關(guān)系存在等)

      ②將上面的假設(shè)代入已知條件求解。

     、鄣贸鼋Y(jié)論。

      構(gòu)建答題模板

     、傧燃俣ǎ杭僭O(shè)結(jié)論成立。

     、谠偻评恚阂约僭O(shè)結(jié)論成立為條件,進(jìn)行推理求解。

     、巯陆Y(jié)論:若推出合理結(jié)果,經(jīng)驗(yàn)證成立則肯。  定假設(shè);若推出矛盾則否定假設(shè)。

     、茉倩仡櫍翰榭搓P(guān)鍵點(diǎn),易錯(cuò)點(diǎn)(特殊情況、隱含條件等),審視解題規(guī)范性。

      離散型隨機(jī)變量的均值與方差

      解題路線圖

      (1)①標(biāo)記事件;②對(duì)事件分解;③計(jì)算概率。

      (2)①確定ξ取值;②計(jì)算概率;③得分布列;④求數(shù)學(xué)期望。

      構(gòu)建答題模板

     、俣ㄔ焊鶕(jù)已知條件確定離散型隨機(jī)變量的取值。

     、诙ㄐ裕好鞔_每個(gè)隨機(jī)變量取值所對(duì)應(yīng)的事件。

     、鄱ㄐ停捍_定事件的概率模型和計(jì)算公式。

     、苡(jì)算:計(jì)算隨機(jī)變量取每一個(gè)值的概率。

     、萘斜恚毫谐龇植剂。

     、耷蠼猓焊鶕(jù)均值、方差公式求解其值。

      函數(shù)的單調(diào)性、極值、最值問(wèn)題

      解題路線圖

      (1)①先對(duì)函數(shù)求導(dǎo);②計(jì)算出某一點(diǎn)的斜率;③得出切線方程。

      (2)①先對(duì)函數(shù)求導(dǎo);②談?wù)搶?dǎo)數(shù)的正負(fù)性;③列表觀察原函數(shù)值;④得到原函數(shù)的單調(diào)區(qū)間和極值。

      構(gòu)建答題模板

     、偾髮(dǎo)數(shù):求f(x)的導(dǎo)數(shù)f′(x)。(注意f(x)的定義域)

     、诮夥匠蹋航鈌′(x)=0,得方程的根。

      ③列表格:利用f′(x)=0的根將f(x)定義域分成若干個(gè)小開(kāi)區(qū)間,并列出表格。

     、艿媒Y(jié)論:從表格觀察f(x)的單調(diào)性、極值、最值等。

     、菰倩仡櫍簩(duì)需討論根的大小問(wèn)題要特殊注意,另外觀察f(x)的間斷點(diǎn)及步驟規(guī)范性。

    延伸閱讀
    搜索教員
    -更多-

    最新教員

    1. 劉教員 北京大學(xué) 信息地理
    2. 黃老師 尚無(wú)職稱等級(jí) 信息地理
    3. 郭教員 四川師范大學(xué) 漢語(yǔ)言文學(xué)
    4. 鄭教員 北京航空航天大學(xué) 計(jì)算機(jī)科學(xué)與技術(shù)
    5. 熊教員 對(duì)外經(jīng)濟(jì)貿(mào)易大學(xué) 會(huì)計(jì)
    6. 霍教員 中國(guó)農(nóng)業(yè)大學(xué) 農(nóng)業(yè)機(jī)械化及其自動(dòng)化
    7. 謝教員 內(nèi)蒙古科技大學(xué) 建環(huán)
    8. 馮教員 中國(guó)傳媒大學(xué) 網(wǎng)絡(luò)空間安全
    9. 魏教員 北京交通大學(xué) 應(yīng)用經(jīng)濟(jì)學(xué)
    10. 彭教員 北京郵電大學(xué) 信息與通信工程